graph TD A[Frontend Language] --> B[Embedded DSL] A --> C[Generation Primitives] A --> D[Parallelism Control] A --> E[Structured Outputs] A --> F[Template System] B --> B1[Python Integration] C --> C1["gen()" function] C --> C2["select()" function] D --> D1["fork()" for Parallel] E --> E1[JSON/XML Support] F --> F1[Dynamic Prompts]
SGLang: Comprehensive Guide to Structured Generation Language
This comprehensive guide covers SGLang (Structured Generation Language), a revolutionary framework that transforms how developers interact with large language models (LLMs) and vision-language models. SGLang achieves unprecedented performance improvements while maintaining programming simplicity and flexibility.
Introduction
SGLang (Structured Generation Language) is a revolutionary framework that transforms how developers interact with large language models (LLMs) and vision-language models. By co-designing both the frontend programming interface and the backend runtime system, SGLang achieves unprecedented performance improvements while maintaining programming simplicity and flexibility.
What is SGLang?
SGLang is a fast serving framework for large language models and vision language models that makes your interaction with models faster and more controllable by co-designing the backend runtime and frontend language. SGLang consists of a frontend language and a runtime, where the frontend simplifies programming with primitives for generation and parallelism control, and the runtime accelerates execution with novel optimizations.
Key Benefits
Up to 5x throughput improvements over traditional serving methods through advanced optimization techniques.
Fine-grained control over generation processes with structured primitives and constraint handling.
Rich primitives for complex LLM programming patterns including parallel execution and multi-step reasoning.
Advanced caching and optimization techniques including RadixAttention for automatic KV cache reuse.
Native support for both language and vision-language models with unified processing pipeline.
Key Features
Frontend Language Features
- Embedded DSL: Domain-specific language embedded in Python
- Generation Primitives: Built-in functions for text generation and control
- Parallelism Control: Native support for parallel generation calls
- Structured Outputs: Easy handling of JSON, XML, and custom formats
- Template System: Powerful templating for dynamic prompt construction
Backend Runtime Features
graph TD A[Backend Runtime] --> B[RadixAttention] A --> C[Zero-overhead Scheduler] A --> D[Continuous Batching] A --> E[Speculative Decoding] A --> F[Multi-modal Processing] A --> G[Quantization Support] A --> H[Parallel Execution] B --> B1[KV Cache Reuse] D --> D1[Dynamic Batching] G --> G1[FP4/FP8/INT4/AWQ/GPTQ] H --> H1[Tensor/Pipeline/Expert/Data]
Architecture Overview
SGLang’s architecture consists of two main components:
1. Frontend Language
The frontend provides a Python-embedded DSL that simplifies LLM programming with:
- Intuitive syntax for generation tasks
- Built-in primitives for common patterns
- Automatic optimization of generation calls
- Type safety and error handling
2. Backend Runtime
The backend proposes RadixAttention, a technique for automatic and efficient KV cache reuse across multiple LLM generation calls. The runtime includes:
- High-performance serving engine
- Advanced memory management
- Automatic optimization passes
- Multi-GPU/multi-node support
Installation and Setup
Prerequisites
- Python 3.8 or higher
- CUDA 11.8+ (for GPU acceleration)
- PyTorch 2.0+
Basic Installation
install.sh
# Install from PyPI
pip install sglang
# Or install from source
git clone https://github.com/sgl-project/sglang.git
cd sglang
pip install -e .
GPU Support
# For CUDA support
pip install sglang[cuda]
# For ROCm/AMD GPU support
pip install sglang[rocm]
Docker Installation
# Pull official Docker image
docker pull lmsysorg/sglang:latest
# Run with GPU support
docker run --gpus all -p 30000:30000 lmsysorg/sglang:latest
Core Concepts
1. Generation Functions
The core abstraction in SGLang is the generation function, which encapsulates prompts and generation logic:
basic_generation.py
import sglang as sgl
@sgl.function
def simple_chat(s, user_message):
+= sgl.user(user_message)
s += sgl.assistant(sgl.gen("response", max_tokens=100)) s
2. State Management
SGLang uses a state object s
to track conversation history and manage generation context:
state_management.py
@sgl.function
def multi_turn_chat(s, messages):
for msg in messages:
+= sgl.user(msg)
s += sgl.assistant(sgl.gen("response", stop="\n")) s
3. Control Primitives
Generate text with specified constraints and parameters.
Choose from predefined options or multiple choice answers.
Create parallel execution branches for concurrent processing.
Process image inputs for vision-language model tasks.
Frontend Language Features
Generation Primitives
Basic Text Generation
story_generator.py
@sgl.function
def story_writer(s, theme):
+= f"Write a story about {theme}:\n"
s += sgl.gen("story", max_tokens=500, temperature=0.7) s
Structured Generation
json_generator.py
@sgl.function
def json_generator(s, query):
+= f"Generate JSON for: {query}\n"
s += sgl.gen("json", max_tokens=200, regex=r'\{.*\}') s
Conditional Generation
conditional_response.py
@sgl.function
def conditional_response(s, question, context):
+= f"Context: {context}\n"
s += f"Question: {question}\n"
s
# First, determine if answerable
+= "Is this answerable? "
s += sgl.gen("answerable", choices=["Yes", "No"])
s
if s["answerable"] == "Yes":
+= "\nAnswer: "
s += sgl.gen("answer", max_tokens=100)
s else:
+= "\nI don't have enough information to answer this question." s
Parallel Execution
parallel_processing.py
@sgl.function
def parallel_summarization(s, documents):
# Fork execution for parallel processing
+= sgl.fork([
s lambda: summarize_doc(doc) for doc in documents
])
# Combine results
= [s[f"summary_{i}"] for i in range(len(documents))]
summaries return summaries
Template System
email_template.py
@sgl.function
def email_generator(s, recipient, subject, tone="professional"):
+= sgl.system(f"Write emails in a {tone} tone.")
s += f"To: {recipient}\n"
s += f"Subject: {subject}\n\n"
s += sgl.gen("body", max_tokens=300) s
Backend Runtime
RadixAttention
RadixAttention structures and automates the reuse of Key-Value (KV) caches during runtime by storing them in a radix tree data structure.
This enables:
- Prefix Sharing: Common prompt prefixes are cached and reused
- Memory Efficiency: Reduced memory usage through intelligent caching
- Speed Improvements: Faster generation through cache hits
graph TD A[Input Prompts] --> B[Radix Tree] B --> C[Shared Prefixes] B --> D[Unique Suffixes] C --> E[KV Cache Reuse] D --> F[New Computation] E --> G[Performance Boost] F --> G
Continuous Batching
The runtime implements continuous batching to:
- Process multiple requests simultaneously
- Dynamically adjust batch sizes
- Optimize GPU utilization
Speculative Decoding
Acceleration technique that:
- Predicts multiple tokens ahead
- Verifies predictions in parallel
- Falls back to standard decoding when needed
Basic Usage Examples
1. Simple Text Generation
poem_generator.py
import sglang as sgl
# Set backend
"http://localhost:30000"))
sgl.set_default_backend(sgl.RuntimeEndpoint(
@sgl.function
def generate_poem(s, topic):
+= f"Write a haiku about {topic}:\n"
s += sgl.gen("poem", max_tokens=50)
s
# Execute
= generate_poem("spring")
result print(result["poem"])
2. Multi-step Reasoning
math_solver.py
@sgl.function
def math_solver(s, problem):
+= f"Problem: {problem}\n"
s += "Let me solve this step by step.\n"
s += "Step 1: "
s += sgl.gen("step1", max_tokens=50, stop="\n")
s += "\nStep 2: "
s += sgl.gen("step2", max_tokens=50, stop="\n")
s += "\nTherefore, the answer is: "
s += sgl.gen("answer", max_tokens=20)
s
= math_solver("What is 15% of 240?") result
3. JSON Structured Output
info_extractor.py
@sgl.function
def extract_info(s, text):
+= f"Extract key information from this text:\n{text}\n"
s += "Output as JSON:\n"
s += sgl.gen(
s "info",
=200,
max_tokens=r'\{[^}]*"name"[^}]*"age"[^}]*"location"[^}]*\}'
regex
)
= extract_info("John Smith is 30 years old and lives in New York.") result
4. Role-playing Conversation
roleplay.py
@sgl.function
def roleplay_chat(s, character, user_input):
+= sgl.system(f"You are {character}. Stay in character.")
s += sgl.user(user_input)
s += sgl.assistant(sgl.gen("response", max_tokens=150))
s
= roleplay_chat("a wise old wizard", "How do I learn magic?") result
Advanced Programming Patterns
1. Chain of Thought Reasoning
cot_reasoning.py
@sgl.function
def cot_reasoning(s, question):
+= f"Question: {question}\n"
s += "Let me think through this step by step:\n"
s
for i in range(3):
+= f"Step {i+1}: "
s += sgl.gen(f"step_{i+1}", max_tokens=100, stop="\n")
s += "\n"
s
+= "Final Answer: "
s += sgl.gen("answer", max_tokens=50) s
2. Self-Correction Loop
self_correction.py
@sgl.function
def self_correct(s, task, max_iterations=3):
+= f"Task: {task}\n"
s
for i in range(max_iterations):
+= f"Attempt {i+1}: "
s += sgl.gen(f"attempt_{i+1}", max_tokens=200)
s
+= "\nIs this correct? "
s += sgl.gen("correct", choices=["Yes", "No"])
s
if s["correct"] == "Yes":
break
else:
+= "\nLet me try again.\n" s
3. Tree Search Generation
tree_search.py
@sgl.function
def tree_search_story(s, prompt, branches=3, depth=2):
+= prompt
s
def explore_branch(state, current_depth):
if current_depth >= depth:
return
= []
candidates for i in range(branches):
+= sgl.gen(f"branch_{current_depth}_{i}", max_tokens=50)
state f"branch_{current_depth}_{i}"])
candidates.append(state[
# Select best candidate (simplified selection)
= 0 # In practice, use a scoring function
best_idx += candidates[best_idx]
state + 1)
explore_branch(state, current_depth
0) explore_branch(s,
4. Parallel Agent Collaboration
multi_agent.py
@sgl.function
def multi_agent_discussion(s, topic, agents):
+= f"Topic: {topic}\n"
s += "Discussion:\n"
s
# Initialize agents
= {}
agent_states for agent in agents:
= sgl.fork(lambda: agent_response(agent, topic))
agent_states[agent]
# Simulate rounds of discussion
for round in range(3):
+= f"\nRound {round + 1}:\n"
s for agent in agents:
+= f"{agent}: "
s += sgl.gen(f"{agent}_round_{round}", max_tokens=100)
s += "\n" s
Performance Optimization
1. Batch Processing
Process multiple inputs in a single batch for maximum throughput efficiency.
batch_processing.py
# Process multiple inputs in a single batch
@sgl.function
def batch_classification(s, texts):
= []
results for text in texts:
+= f"Classify: {text}\nCategory: "
s += sgl.gen("category", choices=["positive", "negative", "neutral"])
s "category"])
results.append(s[return results
# Execute with batching enabled
sgl.set_default_backend("http://localhost:30000", batch_size=32)
sgl.RuntimeEndpoint( )
2. Caching Strategies
caching.py
# Enable aggressive caching for repeated patterns
@sgl.function
def cached_qa(s, question, context):
# Use consistent formatting for better cache hits
+= f"Context: {context}\n"
s += f"Question: {question}\n"
s += "Answer: "
s += sgl.gen("answer", max_tokens=100, temperature=0.0) # Deterministic for caching s
3. Memory Management
memory_management.py
# Optimize memory usage for long conversations
@sgl.function
def efficient_chat(s, messages, max_context_length=2000):
# Truncate context to stay within limits
= sum(len(msg) for msg in messages)
total_length if total_length > max_context_length:
= messages[-(max_context_length // 100):]
messages
for msg in messages:
+= sgl.user(msg)
s += sgl.assistant(sgl.gen("response", max_tokens=150)) s
Vision-Language Model Support
1. Image Understanding
image_description.py
@sgl.function
def describe_image(s, image_path, detail_level="medium"):
+= sgl.image(image_path)
s += f"Describe this image in {detail_level} detail:\n"
s += sgl.gen("description", max_tokens=300)
s
# Usage
= describe_image("/path/to/image.jpg", "high") result
2. Visual Question Answering
visual_qa.py
@sgl.function
def visual_qa(s, image_path, question):
+= sgl.image(image_path)
s += f"Question: {question}\n"
s += "Answer: "
s += sgl.gen("answer", max_tokens=150)
s
= visual_qa("/path/to/chart.png", "What is the highest value in this chart?") result
3. Multi-modal Reasoning
multimodal_analysis.py
@sgl.function
def multimodal_analysis(s, image_path, context):
+= f"Context: {context}\n"
s += sgl.image(image_path)
s += "Based on the context and image, analyze:\n"
s += "1. Visual elements: "
s += sgl.gen("visual", max_tokens=100, stop="\n")
s += "\n2. Relationship to context: "
s += sgl.gen("relationship", max_tokens=100, stop="\n")
s += "\n3. Conclusion: "
s += sgl.gen("conclusion", max_tokens=100) s
Deployment and Serving
1. Starting a Server
start_server.sh
# Basic server startup
python -m sglang.launch_server --model-path meta-llama/Llama-2-7b-chat-hf --port 30000
# With specific configurations
python -m sglang.launch_server \
--model-path meta-llama/Llama-2-7b-chat-hf \
--port 30000 \
--host 0.0.0.0 \
--tp-size 2 \
--mem-fraction-static 0.8
2. Client Configuration
client_setup.py
import sglang as sgl
# Connect to local server
= sgl.RuntimeEndpoint("http://localhost:30000")
backend
sgl.set_default_backend(backend)
# Connect to remote server with authentication
= sgl.RuntimeEndpoint(
backend "https://api.example.com",
={"Authorization": "Bearer your-token"}
headers )
3. Load Balancing
load_balancing.py
# Multiple endpoints for load distribution
= [
endpoints "http://server1:30000",
"http://server2:30000",
"http://server3:30000"
]
= sgl.LoadBalancedEndpoint(endpoints)
backend sgl.set_default_backend(backend)
4. Production Deployment
docker-compose.yml
# Docker Compose example
version: '3.8'
services:
sglang-server:
image: lmsysorg/sglang:latest
ports:
- "30000:30000"
environment:
- MODEL_PATH=meta-llama/Llama-2-7b-chat-hf
- PORT=30000
- TP_SIZE=2
deploy:
resources:
reservations:
devices:
- driver: nvidia
count: 2
capabilities: [gpu]
Best Practices
1. Prompt Engineering
prompt_engineering.py
# Use clear, structured prompts
@sgl.function
def good_prompt(s, task, examples):
+= "Task: " + task + "\n\n"
s
# Provide examples
for i, example in enumerate(examples):
+= f"Example {i+1}:\n"
s += f"Input: {example['input']}\n"
s += f"Output: {example['output']}\n\n"
s
+= "Now, complete this task:\n"
s += "Input: " + sgl.gen("input") + "\n"
s += "Output: " + sgl.gen("output", max_tokens=200) s
2. Error Handling
error_handling.py
@sgl.function
def robust_generation(s, prompt):
try:
+= prompt
s += sgl.gen("response", max_tokens=100, timeout=30)
s
# Validate output
if len(s["response"].strip()) == 0:
+= "Please provide a more detailed response: "
s += sgl.gen("retry", max_tokens=150)
s
except sgl.GenerationError as e:
+= f"Generation failed: {e}. Using fallback."
s += "I apologize, but I cannot process this request." s
3. Testing Strategies
testing.py
import unittest
import sglang as sgl
class TestSGLangFunctions(unittest.TestCase):
def setUp(self):
# Use mock backend for testing
self.backend = sgl.MockBackend()
self.backend)
sgl.set_default_backend(
def test_simple_generation(self):
@sgl.function
def test_func(s):
+= "Hello"
s += sgl.gen("response", max_tokens=10)
s
= test_func()
result self.assertIn("response", result)
def test_structured_output(self):
@sgl.function
def json_test(s):
+= "Generate JSON: "
s += sgl.gen("json", regex=r'\{.*\}')
s
= json_test()
result self.assertTrue(result["json"].startswith("{"))
4. Monitoring and Logging
monitoring.py
import logging
import time
# Set up logging
=logging.INFO)
logging.basicConfig(level= logging.getLogger(__name__)
logger
@sgl.function
def monitored_generation(s, prompt):
= time.time()
start_time
try:
+= prompt
s += sgl.gen("response", max_tokens=100)
s
= time.time() - start_time
duration f"Generation completed in {duration:.2f}s")
logger.info(
except Exception as e:
f"Generation failed: {e}")
logger.error(raise
Comparison with Other Frameworks
Feature | SGLang | LMQL |
---|---|---|
Performance | High (RadixAttention) | Medium |
Python Integration | Native embedding | External DSL |
Caching | Automatic | Manual |
Parallelism | Built-in | Limited |
Feature | SGLang | Guidance |
---|---|---|
Runtime Optimization | Yes | Limited |
Structured Output | Advanced | Basic |
Vision Support | Yes | No |
Deployment | Production-ready | Research-focused |
Feature | SGLang | LangChain |
---|---|---|
Level | Low-level control | High-level abstractions |
Performance | Optimized runtime | Variable |
Flexibility | High | Medium |
Learning Curve | Moderate | Low |
Troubleshooting
Common Issues
1. Connection Problems
debug_connection.py
# Debug connection issues
try:
= sgl.RuntimeEndpoint("http://localhost:30000")
backend
backend.health_check()print("Server is healthy")
except ConnectionError:
print("Cannot connect to server. Check if it's running.")
2. Memory Issues
memory_debug.sh
# Monitor memory usage
nvidia-smi
# Adjust memory settings
python -m sglang.launch_server \
--model-path your-model \
--mem-fraction-static 0.6 # Reduce if getting OOM
3. Generation Timeouts
timeout_handling.py
@sgl.function
def timeout_handling(s, prompt):
try:
+= prompt
s += sgl.gen("response", max_tokens=100, timeout=30)
s except sgl.TimeoutError:
+= "Request timed out. Please try again." s
4. Performance Issues
performance_debug.py
# Enable performance profiling
True)
sgl.set_debug_mode(
@sgl.function
def profiled_function(s, input):
with sgl.profile("generation"):
+= input
s += sgl.gen("output", max_tokens=100) s
Debugging Tips
Enable Verbose Logging
import logging "sglang").setLevel(logging.DEBUG) logging.getLogger(
Check Server Logs
# Server logs show detailed execution info tail -f sglang_server.log
Use Mock Backend for Testing
# Test logic without actual model calls sgl.set_default_backend(sgl.MockBackend())
Contributing
Development Setup
dev_setup.sh
# Clone repository
git clone https://github.com/sgl-project/sglang.git
cd sglang
# Create development environment
conda create -n sglang-dev python=3.9
conda activate sglang-dev
# Install in development mode
pip install -e .
pip install -r requirements-dev.txt
Running Tests
run_tests.sh
# Run all tests
python -m pytest tests/
# Run specific test category
python -m pytest tests/test_frontend.py
# Run with coverage
python -m pytest --cov=sglang tests/
Code Style
code_style.sh
# Format code
black sglang/
isort sglang/
# Check style
flake8 sglang/
mypy sglang/
Submitting PRs
- Fork the repository
- Create a feature branch
- Add tests for new functionality
- Update documentation
- Submit pull request with clear description