Kolmogorov-Arnold Networks: Complete Implementation Guide
Introduction
Kolmogorov-Arnold Networks (KANs) represent a paradigm shift in neural network architecture, drawing inspiration from the mathematical foundations laid by Andrey Kolmogorov and Vladimir Arnold in the 1950s. Unlike traditional Multi-Layer Perceptrons (MLPs) that place learnable parameters on nodes, KANs position learnable activation functions on edges, fundamentally changing how neural networks process and learn from data.
Architecture Overview
Traditional MLPs vs KANs
Multi-Layer Perceptrons (MLPs): - Learnable parameters: weights and biases on nodes - Fixed activation functions (ReLU, sigmoid, etc.) - Linear transformations followed by pointwise nonlinearities
Kolmogorov-Arnold Networks (KANs): - Learnable parameters: activation functions on edges - No traditional weight matrices - Each edge has its own learnable univariate function
Mathematical Formulation
Layer-wise Computation
For a KAN with L layers, the computation at layer l can be expressed as:
# Pseudocode for KAN layer computation
def kan_layer_forward(x, phi_functions):
"""
x: input tensor of shape (batch_size, input_dim)
phi_functions: learnable univariate functions for each edge
"""
= torch.zeros(batch_size, output_dim)
output
for i in range(input_dim):
for j in range(output_dim):
# Apply learnable activation function φ_{i,j} to input x_i
+= phi_functions[i][j](x[:, i])
output[:, j]
return output
Learnable Activation Functions
The core innovation of KANs lies in the learnable activation functions. These are typically implemented using:
- B-splines: Piecewise polynomial functions that provide smooth, differentiable approximations
- Residual connections: Allow the network to learn both the spline component and a base function
- Grid-based parameterization: Enables efficient computation and gradient flow
Implementation Details
B-spline Based Activation Functions
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
class BSplineActivation(nn.Module):
def __init__(self, grid_size=5, spline_order=3, grid_range=(-1, 1)):
super().__init__()
self.grid_size = grid_size
self.spline_order = spline_order
self.grid_range = grid_range
# Create uniform grid
self.register_buffer('grid', torch.linspace(
0], grid_range[1], grid_size + 1
grid_range[
))
# Extend grid for B-spline computation
= (grid_range[1] - grid_range[0]) / grid_size
h = torch.cat([
extended_grid 0] - spline_order * h, grid_range[0], h),
torch.arange(grid_range[self.grid,
1] + h, grid_range[1] + (spline_order + 1) * h, h)
torch.arange(grid_range[
])self.register_buffer('extended_grid', extended_grid)
# Learnable coefficients for B-spline
self.coefficients = nn.Parameter(
+ spline_order)
torch.randn(grid_size
)
# Scale parameter for the activation
self.scale = nn.Parameter(torch.ones(1))
def forward(self, x):
# Compute B-spline basis functions
= x.shape[0]
batch_size = x.unsqueeze(-1) # (batch_size, 1)
x_expanded
# Compute B-spline values
= self.compute_bspline(x_expanded)
spline_values
# Linear combination with learnable coefficients
= torch.sum(spline_values * self.coefficients, dim=-1)
output
return self.scale * output
def compute_bspline(self, x):
"""Compute B-spline basis functions using Cox-de Boor recursion"""
= self.extended_grid
grid = self.spline_order
order
# Initialize basis functions
= torch.zeros(x.shape[0], len(grid) - 1, device=x.device)
basis
# Find intervals
for i in range(len(grid) - 1):
= (x.squeeze(-1) >= grid[i]) & (x.squeeze(-1) < grid[i + 1])
mask = 1.0
basis[mask, i]
# Cox-de Boor recursion
for k in range(1, order + 1):
= torch.zeros_like(basis)
new_basis for i in range(len(grid) - k - 1):
if grid[i + k] != grid[i]:
= (x.squeeze(-1) - grid[i]) / (grid[i + k] - grid[i])
alpha1 += alpha1 * basis[:, i]
new_basis[:, i]
if grid[i + k + 1] != grid[i + 1]:
= (grid[i + k + 1] - x.squeeze(-1)) / (grid[i + k + 1] - grid[i + 1])
alpha2 += alpha2 * basis[:, i + 1]
new_basis[:, i]
= new_basis
basis
return basis[:, :len(self.coefficients)]
class KANLayer(nn.Module):
def __init__(self, input_dim, output_dim, grid_size=5, spline_order=3):
super().__init__()
self.input_dim = input_dim
self.output_dim = output_dim
# Create learnable activation functions for each edge
self.activations = nn.ModuleList([
nn.ModuleList([
BSplineActivation(grid_size, spline_order) for _ in range(output_dim)
for _ in range(input_dim)
])
])
# Base linear transformation (residual connection)
self.base_weight = nn.Parameter(torch.randn(input_dim, output_dim) * 0.1)
def forward(self, x):
= x.shape[0]
batch_size = torch.zeros(batch_size, self.output_dim, device=x.device)
output
# Apply learnable activations
for i in range(self.input_dim):
for j in range(self.output_dim):
= self.activations[i][j](x[:, i])
activated += activated
output[:, j]
# Add base linear transformation
= torch.matmul(x, self.base_weight)
base_output
return output + base_output
class KolmogorovArnoldNetwork(nn.Module):
def __init__(self, layer_dims, grid_size=5, spline_order=3):
super().__init__()
self.layers = nn.ModuleList()
for i in range(len(layer_dims) - 1):
= KANLayer(
layer
layer_dims[i], + 1],
layer_dims[i
grid_size,
spline_order
)self.layers.append(layer)
def forward(self, x):
for layer in self.layers:
= layer(x)
x return x
def regularization_loss(self, regularization_factor=1e-4):
"""Compute regularization loss to encourage sparsity"""
= 0
reg_loss for layer in self.layers:
for i in range(layer.input_dim):
for j in range(layer.output_dim):
# L1 regularization on activation function coefficients
+= torch.sum(torch.abs(layer.activations[i][j].coefficients))
reg_loss
return regularization_factor * reg_loss
Training Loop Implementation
def train_kan(model, train_loader, val_loader, epochs=100, lr=1e-3):
= torch.optim.AdamW(model.parameters(), lr=lr, weight_decay=1e-4)
optimizer = torch.optim.lr_scheduler.ReduceLROnPlateau(
scheduler ='min', factor=0.5, patience=10
optimizer, mode
)
= nn.MSELoss()
criterion
= []
train_losses = []
val_losses
for epoch in range(epochs):
# Training phase
model.train()= 0
train_loss for batch_idx, (data, target) in enumerate(train_loader):
optimizer.zero_grad()
= model(data)
output = criterion(output, target)
loss
# Add regularization
= model.regularization_loss()
reg_loss = loss + reg_loss
total_loss
total_loss.backward()
# Gradient clipping for stability
=1.0)
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm
optimizer.step()+= total_loss.item()
train_loss
# Validation phase
eval()
model.= 0
val_loss with torch.no_grad():
for data, target in val_loader:
= model(data)
output += criterion(output, target).item()
val_loss
= train_loss / len(train_loader)
avg_train_loss = val_loss / len(val_loader)
avg_val_loss
train_losses.append(avg_train_loss)
val_losses.append(avg_val_loss)
scheduler.step(avg_val_loss)
if epoch % 10 == 0:
print(f'Epoch {epoch}: Train Loss = {avg_train_loss:.6f}, '
f'Val Loss = {avg_val_loss:.6f}')
return train_losses, val_losses
Advanced Features and Optimizations
1. Pruning and Sparsification
def prune_kan(model, threshold=1e-2):
"""Remove edges with small activation function magnitudes"""
with torch.no_grad():
for layer in model.layers:
for i in range(layer.input_dim):
for j in range(layer.output_dim):
= layer.activations[i][j]
activation
# Compute magnitude of activation function
= torch.norm(activation.coefficients)
magnitude
if magnitude < threshold:
# Zero out the activation function
0)
activation.coefficients.fill_(0) activation.scale.fill_(
2. Symbolic Regression Capabilities
def symbolic_extraction(model, input_names, output_names):
"""Extract symbolic expressions from trained KAN"""
= []
expressions
for layer_idx, layer in enumerate(model.layers):
= []
layer_expressions
for j in range(layer.output_dim):
= []
terms
for i in range(layer.input_dim):
= layer.activations[i][j]
activation
# Check if activation is significant
if torch.norm(activation.coefficients) > 1e-3:
# Fit simple function to activation
= fit_symbolic_function(activation)
func_type f"{func_type}({input_names[i]})")
terms.append(
if terms:
= " + ".join(terms)
expression
layer_expressions.append(expression)
expressions.append(layer_expressions)
return expressions
def fit_symbolic_function(activation):
"""Fit symbolic function to learned activation"""
# Sample the activation function
= torch.linspace(-1, 1, 100)
x_test = activation(x_test).detach()
y_test
# Try fitting common functions
= {
functions 'linear': lambda x, a, b: a * x + b,
'quadratic': lambda x, a, b, c: a * x**2 + b * x + c,
'sin': lambda x, a, b, c: a * torch.sin(b * x + c),
'exp': lambda x, a, b: a * torch.exp(b * x),
'tanh': lambda x, a, b: a * torch.tanh(b * x)
}
= 'linear' # Default
best_fit = float('inf')
min_error
for func_name, func in functions.items():
try:
# Simplified fitting (in practice, use scipy.optimize)
if func_name == 'linear':
# Simple linear regression
= torch.stack([x_test, torch.ones_like(x_test)], dim=1)
A = torch.linalg.lstsq(A, y_test).solution
params = func(x_test, params[0], params[1])
pred else:
# Use first-order approximation
= y_test # Placeholder
pred
= torch.mean((y_test - pred)**2)
error
if error < min_error:
= error
min_error = func_name
best_fit
except:
continue
return best_fit
3. Grid Adaptation
def adaptive_grid_refinement(model, train_loader, refinement_factor=2):
"""Adapt grid points based on function complexity"""
eval()
model.
with torch.no_grad():
# Collect statistics on activation function usage
= {}
activation_stats
for batch_idx, (data, target) in enumerate(train_loader):
if batch_idx > 10: # Sample a few batches
break
for layer_idx, layer in enumerate(model.layers):
if layer_idx not in activation_stats:
= {}
activation_stats[layer_idx]
for i in range(layer.input_dim):
for j in range(layer.output_dim):
= (i, j)
key if key not in activation_stats[layer_idx]:
= []
activation_stats[layer_idx][key]
# Record input values for this activation
if layer_idx == 0:
= data[:, i]
input_vals else:
# Would need to track intermediate activations
= data[:, i] # Simplified
input_vals
activation_stats[layer_idx][key].extend(
input_vals.cpu().numpy().tolist()
)
# Refine grids based on usage patterns
for layer_idx, layer in enumerate(model.layers):
for i in range(layer.input_dim):
for j in range(layer.output_dim):
= layer.activations[i][j]
activation = (i, j)
key
if key in activation_stats[layer_idx]:
= activation_stats[layer_idx][key]
input_range
# Compute density and refine grid
= torch.histogram(
hist, bins =activation.grid_size
torch.tensor(input_range), bins
)
# Areas with high density get more grid points
= hist > hist.mean()
high_density_regions
if high_density_regions.any():
# Refine grid (simplified implementation)
= activation.grid_size * refinement_factor
new_grid_size # Would need to properly interpolate coefficients
Practical Applications and Use Cases
1. Function Approximation
# Example: Approximating a complex mathematical function
def test_function_approximation():
# Generate synthetic data
def target_function(x):
return torch.sin(x[:, 0]) * torch.cos(x[:, 1]) + 0.5 * x[:, 0]**2
# Create dataset
= 1000
n_samples = torch.randn(n_samples, 2)
x = target_function(x).unsqueeze(1)
y
# Split data
= int(0.8 * n_samples)
train_size = x[:train_size], x[train_size:]
train_x, test_x = y[:train_size], y[train_size:]
train_y, test_y
# Create KAN model
= KolmogorovArnoldNetwork([2, 5, 1], grid_size=10)
model
# Train model
= torch.utils.data.TensorDataset(train_x, train_y)
train_dataset = torch.utils.data.DataLoader(train_dataset, batch_size=32)
train_loader
= torch.utils.data.TensorDataset(test_x, test_y)
val_dataset = torch.utils.data.DataLoader(val_dataset, batch_size=32)
val_loader
= train_kan(model, train_loader, val_loader)
train_losses, val_losses
# Evaluate
eval()
model.with torch.no_grad():
= model(test_x)
predictions = torch.mean((predictions - test_y)**2)
mse print(f"Test MSE: {mse.item():.6f}")
return model, train_losses, val_losses
2. Scientific Computing
# Example: Solving differential equations
def solve_pde_with_kan():
"""Use KAN to solve partial differential equations"""
class PDESolver(nn.Module):
def __init__(self):
super().__init__()
self.kan = KolmogorovArnoldNetwork([2, 10, 10, 1])
def forward(self, x, t):
= torch.stack([x, t], dim=1)
inputs return self.kan(inputs)
def physics_loss(self, x, t):
"""Compute physics-informed loss for PDE"""
True)
x.requires_grad_(True)
t.requires_grad_(
= self.forward(x, t)
u
# Compute derivatives
= torch.autograd.grad(
u_t =True
u, t, torch.ones_like(u), create_graph0]
)[
= torch.autograd.grad(
u_x =True
u, x, torch.ones_like(u), create_graph0]
)[
= torch.autograd.grad(
u_xx =True
u_x, x, torch.ones_like(u_x), create_graph0]
)[
# PDE residual: u_t - u_xx = 0 (heat equation)
= u_t - u_xx
pde_residual
return torch.mean(pde_residual**2)
# Training would involve minimizing physics loss
# along with boundary and initial conditions
return PDESolver()
Performance Analysis and Comparisons
Computational Complexity
Memory Complexity: - MLPs: O(Σ(n_i × n_{i+1})) where n_i is the number of neurons in layer i - KANs: O(Σ(n_i × n_{i+1} × G)) where G is the grid size for B-splines
Time Complexity: - Forward pass: O(Σ(n_i × n_{i+1} × G × k)) where k is the spline order - Backward pass: Similar, with additional complexity for B-spline derivative computation
Advantages of KANs
- Interpretability: Learnable activation functions can be visualized and analyzed
- Expressiveness: Can represent complex functions with fewer parameters in some cases
- Scientific Computing: Natural fit for problems requiring symbolic regression
- Adaptive Capacity: Can learn specialized activation functions for different parts of the input space
Limitations
- Computational Overhead: B-spline computation is more expensive than simple activations
- Memory Usage: Requires more memory due to grid-based parameterization
- Training Stability: Can be more sensitive to hyperparameter choices
- Limited Scale: Current implementations don’t scale to very large networks easily
Best Practices and Hyperparameter Tuning
Grid Size Selection
def tune_grid_size(data_complexity, input_dim):
"""Heuristic for selecting appropriate grid size"""
= max(5, min(20, int(math.log(data_complexity) * 2)))
base_grid_size
# Adjust based on input dimensionality
if input_dim > 10:
= max(3, base_grid_size - 2)
base_grid_size elif input_dim < 3:
= min(25, base_grid_size + 3)
base_grid_size
return base_grid_size
Regularization Strategies
def advanced_regularization(model, l1_factor=1e-4, smoothness_factor=1e-3):
"""Comprehensive regularization for KANs"""
= 0
reg_loss
for layer in model.layers:
for i in range(layer.input_dim):
for j in range(layer.output_dim):
= layer.activations[i][j]
activation
# L1 regularization for sparsity
= torch.sum(torch.abs(activation.coefficients))
l1_loss
# Smoothness regularization
if len(activation.coefficients) > 1:
= torch.sum(
smoothness_loss 1:] - activation.coefficients[:-1])**2
(activation.coefficients[
)else:
= 0
smoothness_loss
+= l1_factor * l1_loss + smoothness_factor * smoothness_loss
reg_loss
return reg_loss
Future Directions and Research Opportunities
1. Scalability Improvements
- Efficient GPU implementations of B-spline computations
- Sparse KAN architectures for high-dimensional problems
- Distributed training strategies
2. Theoretical Developments
- Approximation theory for KAN architectures
- Convergence guarantees and optimization landscapes
- Connections to other function approximation methods
3. Application Domains
- Scientific machine learning and physics-informed neural networks
- Automated theorem proving and symbolic computation
- Interpretable AI for critical applications
Conclusion
Kolmogorov-Arnold Networks represent a fundamental rethinking of neural network architecture, moving from node-based to edge-based learnable parameters. While they face challenges in terms of computational efficiency and scalability, their unique properties make them particularly well-suited for scientific computing, interpretable AI, and function approximation tasks.
The mathematical elegance of KANs, rooted in classical approximation theory, combined with their practical capabilities for symbolic regression and interpretable modeling, positions them as an important tool in the modern machine learning toolkit. As implementation techniques improve and computational bottlenecks are addressed, we can expect to see broader adoption of KAN-based approaches across various domains.
The code implementations provided here offer a foundation for experimenting with KANs, but ongoing research continues to refine these architectures and explore their full potential. Whether KANs will revolutionize neural network design remains to be seen, but they certainly offer a compelling alternative perspective on how neural networks can learn and represent complex functions.