Kolmogorov-Arnold Networks: Complete Implementation Guide

Introduction
Kolmogorov-Arnold Networks (KANs) represent a paradigm shift in neural network architecture, drawing inspiration from the mathematical foundations laid by Andrey Kolmogorov and Vladimir Arnold in the 1950s. Unlike traditional Multi-Layer Perceptrons (MLPs) that place learnable parameters on nodes, KANs position learnable activation functions on edges, fundamentally changing how neural networks process and learn from data.
Architecture Overview
Traditional MLPs vs KANs
Multi-Layer Perceptrons (MLPs): - Learnable parameters: weights and biases on nodes - Fixed activation functions (ReLU, sigmoid, etc.) - Linear transformations followed by pointwise nonlinearities
Kolmogorov-Arnold Networks (KANs): - Learnable parameters: activation functions on edges - No traditional weight matrices - Each edge has its own learnable univariate function
Mathematical Formulation
Layer-wise Computation
For a KAN with L layers, the computation at layer l can be expressed as:
# Pseudocode for KAN layer computation
def kan_layer_forward(x, phi_functions):
"""
x: input tensor of shape (batch_size, input_dim)
phi_functions: learnable univariate functions for each edge
"""
output = torch.zeros(batch_size, output_dim)
for i in range(input_dim):
for j in range(output_dim):
# Apply learnable activation function φ_{i,j} to input x_i
output[:, j] += phi_functions[i][j](x[:, i])
return outputLearnable Activation Functions
The core innovation of KANs lies in the learnable activation functions. These are typically implemented using:
- B-splines: Piecewise polynomial functions that provide smooth, differentiable approximations
- Residual connections: Allow the network to learn both the spline component and a base function
- Grid-based parameterization: Enables efficient computation and gradient flow
Implementation Details
B-spline Based Activation Functions
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
class BSplineActivation(nn.Module):
def __init__(self, grid_size=5, spline_order=3, grid_range=(-1, 1)):
super().__init__()
self.grid_size = grid_size
self.spline_order = spline_order
self.grid_range = grid_range
# Create uniform grid
self.register_buffer('grid', torch.linspace(
grid_range[0], grid_range[1], grid_size + 1
))
# Extend grid for B-spline computation
h = (grid_range[1] - grid_range[0]) / grid_size
extended_grid = torch.cat([
torch.arange(grid_range[0] - spline_order * h, grid_range[0], h),
self.grid,
torch.arange(grid_range[1] + h, grid_range[1] + (spline_order + 1) * h, h)
])
self.register_buffer('extended_grid', extended_grid)
# Learnable coefficients for B-spline
self.coefficients = nn.Parameter(
torch.randn(grid_size + spline_order)
)
# Scale parameter for the activation
self.scale = nn.Parameter(torch.ones(1))
def forward(self, x):
# Compute B-spline basis functions
batch_size = x.shape[0]
x_expanded = x.unsqueeze(-1) # (batch_size, 1)
# Compute B-spline values
spline_values = self.compute_bspline(x_expanded)
# Linear combination with learnable coefficients
output = torch.sum(spline_values * self.coefficients, dim=-1)
return self.scale * output
def compute_bspline(self, x):
"""Compute B-spline basis functions using Cox-de Boor recursion"""
grid = self.extended_grid
order = self.spline_order
# Initialize basis functions
basis = torch.zeros(x.shape[0], len(grid) - 1, device=x.device)
# Find intervals
for i in range(len(grid) - 1):
mask = (x.squeeze(-1) >= grid[i]) & (x.squeeze(-1) < grid[i + 1])
basis[mask, i] = 1.0
# Cox-de Boor recursion
for k in range(1, order + 1):
new_basis = torch.zeros_like(basis)
for i in range(len(grid) - k - 1):
if grid[i + k] != grid[i]:
alpha1 = (x.squeeze(-1) - grid[i]) / (grid[i + k] - grid[i])
new_basis[:, i] += alpha1 * basis[:, i]
if grid[i + k + 1] != grid[i + 1]:
alpha2 = (grid[i + k + 1] - x.squeeze(-1)) / (grid[i + k + 1] - grid[i + 1])
new_basis[:, i] += alpha2 * basis[:, i + 1]
basis = new_basis
return basis[:, :len(self.coefficients)]
class KANLayer(nn.Module):
def __init__(self, input_dim, output_dim, grid_size=5, spline_order=3):
super().__init__()
self.input_dim = input_dim
self.output_dim = output_dim
# Create learnable activation functions for each edge
self.activations = nn.ModuleList([
nn.ModuleList([
BSplineActivation(grid_size, spline_order)
for _ in range(output_dim)
]) for _ in range(input_dim)
])
# Base linear transformation (residual connection)
self.base_weight = nn.Parameter(torch.randn(input_dim, output_dim) * 0.1)
def forward(self, x):
batch_size = x.shape[0]
output = torch.zeros(batch_size, self.output_dim, device=x.device)
# Apply learnable activations
for i in range(self.input_dim):
for j in range(self.output_dim):
activated = self.activations[i][j](x[:, i])
output[:, j] += activated
# Add base linear transformation
base_output = torch.matmul(x, self.base_weight)
return output + base_output
class KolmogorovArnoldNetwork(nn.Module):
def __init__(self, layer_dims, grid_size=5, spline_order=3):
super().__init__()
self.layers = nn.ModuleList()
for i in range(len(layer_dims) - 1):
layer = KANLayer(
layer_dims[i],
layer_dims[i + 1],
grid_size,
spline_order
)
self.layers.append(layer)
def forward(self, x):
for layer in self.layers:
x = layer(x)
return x
def regularization_loss(self, regularization_factor=1e-4):
"""Compute regularization loss to encourage sparsity"""
reg_loss = 0
for layer in self.layers:
for i in range(layer.input_dim):
for j in range(layer.output_dim):
# L1 regularization on activation function coefficients
reg_loss += torch.sum(torch.abs(layer.activations[i][j].coefficients))
return regularization_factor * reg_lossTraining Loop Implementation
def train_kan(model, train_loader, val_loader, epochs=100, lr=1e-3):
optimizer = torch.optim.AdamW(model.parameters(), lr=lr, weight_decay=1e-4)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
optimizer, mode='min', factor=0.5, patience=10
)
criterion = nn.MSELoss()
train_losses = []
val_losses = []
for epoch in range(epochs):
# Training phase
model.train()
train_loss = 0
for batch_idx, (data, target) in enumerate(train_loader):
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
# Add regularization
reg_loss = model.regularization_loss()
total_loss = loss + reg_loss
total_loss.backward()
# Gradient clipping for stability
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)
optimizer.step()
train_loss += total_loss.item()
# Validation phase
model.eval()
val_loss = 0
with torch.no_grad():
for data, target in val_loader:
output = model(data)
val_loss += criterion(output, target).item()
avg_train_loss = train_loss / len(train_loader)
avg_val_loss = val_loss / len(val_loader)
train_losses.append(avg_train_loss)
val_losses.append(avg_val_loss)
scheduler.step(avg_val_loss)
if epoch % 10 == 0:
print(f'Epoch {epoch}: Train Loss = {avg_train_loss:.6f}, '
f'Val Loss = {avg_val_loss:.6f}')
return train_losses, val_lossesAdvanced Features and Optimizations
1. Pruning and Sparsification
def prune_kan(model, threshold=1e-2):
"""Remove edges with small activation function magnitudes"""
with torch.no_grad():
for layer in model.layers:
for i in range(layer.input_dim):
for j in range(layer.output_dim):
activation = layer.activations[i][j]
# Compute magnitude of activation function
magnitude = torch.norm(activation.coefficients)
if magnitude < threshold:
# Zero out the activation function
activation.coefficients.fill_(0)
activation.scale.fill_(0)2. Symbolic Regression Capabilities
def symbolic_extraction(model, input_names, output_names):
"""Extract symbolic expressions from trained KAN"""
expressions = []
for layer_idx, layer in enumerate(model.layers):
layer_expressions = []
for j in range(layer.output_dim):
terms = []
for i in range(layer.input_dim):
activation = layer.activations[i][j]
# Check if activation is significant
if torch.norm(activation.coefficients) > 1e-3:
# Fit simple function to activation
func_type = fit_symbolic_function(activation)
terms.append(f"{func_type}({input_names[i]})")
if terms:
expression = " + ".join(terms)
layer_expressions.append(expression)
expressions.append(layer_expressions)
return expressions
def fit_symbolic_function(activation):
"""Fit symbolic function to learned activation"""
# Sample the activation function
x_test = torch.linspace(-1, 1, 100)
y_test = activation(x_test).detach()
# Try fitting common functions
functions = {
'linear': lambda x, a, b: a * x + b,
'quadratic': lambda x, a, b, c: a * x**2 + b * x + c,
'sin': lambda x, a, b, c: a * torch.sin(b * x + c),
'exp': lambda x, a, b: a * torch.exp(b * x),
'tanh': lambda x, a, b: a * torch.tanh(b * x)
}
best_fit = 'linear' # Default
min_error = float('inf')
for func_name, func in functions.items():
try:
# Simplified fitting (in practice, use scipy.optimize)
if func_name == 'linear':
# Simple linear regression
A = torch.stack([x_test, torch.ones_like(x_test)], dim=1)
params = torch.linalg.lstsq(A, y_test).solution
pred = func(x_test, params[0], params[1])
else:
# Use first-order approximation
pred = y_test # Placeholder
error = torch.mean((y_test - pred)**2)
if error < min_error:
min_error = error
best_fit = func_name
except:
continue
return best_fit3. Grid Adaptation
def adaptive_grid_refinement(model, train_loader, refinement_factor=2):
"""Adapt grid points based on function complexity"""
model.eval()
with torch.no_grad():
# Collect statistics on activation function usage
activation_stats = {}
for batch_idx, (data, target) in enumerate(train_loader):
if batch_idx > 10: # Sample a few batches
break
for layer_idx, layer in enumerate(model.layers):
if layer_idx not in activation_stats:
activation_stats[layer_idx] = {}
for i in range(layer.input_dim):
for j in range(layer.output_dim):
key = (i, j)
if key not in activation_stats[layer_idx]:
activation_stats[layer_idx][key] = []
# Record input values for this activation
if layer_idx == 0:
input_vals = data[:, i]
else:
# Would need to track intermediate activations
input_vals = data[:, i] # Simplified
activation_stats[layer_idx][key].extend(
input_vals.cpu().numpy().tolist()
)
# Refine grids based on usage patterns
for layer_idx, layer in enumerate(model.layers):
for i in range(layer.input_dim):
for j in range(layer.output_dim):
activation = layer.activations[i][j]
key = (i, j)
if key in activation_stats[layer_idx]:
input_range = activation_stats[layer_idx][key]
# Compute density and refine grid
hist, bins = torch.histogram(
torch.tensor(input_range), bins=activation.grid_size
)
# Areas with high density get more grid points
high_density_regions = hist > hist.mean()
if high_density_regions.any():
# Refine grid (simplified implementation)
new_grid_size = activation.grid_size * refinement_factor
# Would need to properly interpolate coefficientsPractical Applications and Use Cases
1. Function Approximation
# Example: Approximating a complex mathematical function
def test_function_approximation():
# Generate synthetic data
def target_function(x):
return torch.sin(x[:, 0]) * torch.cos(x[:, 1]) + 0.5 * x[:, 0]**2
# Create dataset
n_samples = 1000
x = torch.randn(n_samples, 2)
y = target_function(x).unsqueeze(1)
# Split data
train_size = int(0.8 * n_samples)
train_x, test_x = x[:train_size], x[train_size:]
train_y, test_y = y[:train_size], y[train_size:]
# Create KAN model
model = KolmogorovArnoldNetwork([2, 5, 1], grid_size=10)
# Train model
train_dataset = torch.utils.data.TensorDataset(train_x, train_y)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=32)
val_dataset = torch.utils.data.TensorDataset(test_x, test_y)
val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=32)
train_losses, val_losses = train_kan(model, train_loader, val_loader)
# Evaluate
model.eval()
with torch.no_grad():
predictions = model(test_x)
mse = torch.mean((predictions - test_y)**2)
print(f"Test MSE: {mse.item():.6f}")
return model, train_losses, val_losses2. Scientific Computing
# Example: Solving differential equations
def solve_pde_with_kan():
"""Use KAN to solve partial differential equations"""
class PDESolver(nn.Module):
def __init__(self):
super().__init__()
self.kan = KolmogorovArnoldNetwork([2, 10, 10, 1])
def forward(self, x, t):
inputs = torch.stack([x, t], dim=1)
return self.kan(inputs)
def physics_loss(self, x, t):
"""Compute physics-informed loss for PDE"""
x.requires_grad_(True)
t.requires_grad_(True)
u = self.forward(x, t)
# Compute derivatives
u_t = torch.autograd.grad(
u, t, torch.ones_like(u), create_graph=True
)[0]
u_x = torch.autograd.grad(
u, x, torch.ones_like(u), create_graph=True
)[0]
u_xx = torch.autograd.grad(
u_x, x, torch.ones_like(u_x), create_graph=True
)[0]
# PDE residual: u_t - u_xx = 0 (heat equation)
pde_residual = u_t - u_xx
return torch.mean(pde_residual**2)
# Training would involve minimizing physics loss
# along with boundary and initial conditions
return PDESolver()Performance Analysis and Comparisons
Computational Complexity
Memory Complexity: - MLPs: O(Σ(n_i × n_{i+1})) where n_i is the number of neurons in layer i - KANs: O(Σ(n_i × n_{i+1} × G)) where G is the grid size for B-splines
Time Complexity: - Forward pass: O(Σ(n_i × n_{i+1} × G × k)) where k is the spline order - Backward pass: Similar, with additional complexity for B-spline derivative computation
Advantages of KANs
- Interpretability: Learnable activation functions can be visualized and analyzed
- Expressiveness: Can represent complex functions with fewer parameters in some cases
- Scientific Computing: Natural fit for problems requiring symbolic regression
- Adaptive Capacity: Can learn specialized activation functions for different parts of the input space
Limitations
- Computational Overhead: B-spline computation is more expensive than simple activations
- Memory Usage: Requires more memory due to grid-based parameterization
- Training Stability: Can be more sensitive to hyperparameter choices
- Limited Scale: Current implementations don’t scale to very large networks easily
Best Practices and Hyperparameter Tuning
Grid Size Selection
def tune_grid_size(data_complexity, input_dim):
"""Heuristic for selecting appropriate grid size"""
base_grid_size = max(5, min(20, int(math.log(data_complexity) * 2)))
# Adjust based on input dimensionality
if input_dim > 10:
base_grid_size = max(3, base_grid_size - 2)
elif input_dim < 3:
base_grid_size = min(25, base_grid_size + 3)
return base_grid_sizeRegularization Strategies
def advanced_regularization(model, l1_factor=1e-4, smoothness_factor=1e-3):
"""Comprehensive regularization for KANs"""
reg_loss = 0
for layer in model.layers:
for i in range(layer.input_dim):
for j in range(layer.output_dim):
activation = layer.activations[i][j]
# L1 regularization for sparsity
l1_loss = torch.sum(torch.abs(activation.coefficients))
# Smoothness regularization
if len(activation.coefficients) > 1:
smoothness_loss = torch.sum(
(activation.coefficients[1:] - activation.coefficients[:-1])**2
)
else:
smoothness_loss = 0
reg_loss += l1_factor * l1_loss + smoothness_factor * smoothness_loss
return reg_lossFuture Directions and Research Opportunities
1. Scalability Improvements
- Efficient GPU implementations of B-spline computations
- Sparse KAN architectures for high-dimensional problems
- Distributed training strategies
2. Theoretical Developments
- Approximation theory for KAN architectures
- Convergence guarantees and optimization landscapes
- Connections to other function approximation methods
3. Application Domains
- Scientific machine learning and physics-informed neural networks
- Automated theorem proving and symbolic computation
- Interpretable AI for critical applications
Conclusion
Kolmogorov-Arnold Networks represent a fundamental rethinking of neural network architecture, moving from node-based to edge-based learnable parameters. While they face challenges in terms of computational efficiency and scalability, their unique properties make them particularly well-suited for scientific computing, interpretable AI, and function approximation tasks.
The mathematical elegance of KANs, rooted in classical approximation theory, combined with their practical capabilities for symbolic regression and interpretable modeling, positions them as an important tool in the modern machine learning toolkit. As implementation techniques improve and computational bottlenecks are addressed, we can expect to see broader adoption of KAN-based approaches across various domains.
The code implementations provided here offer a foundation for experimenting with KANs, but ongoing research continues to refine these architectures and explore their full potential. Whether KANs will revolutionize neural network design remains to be seen, but they certainly offer a compelling alternative perspective on how neural networks can learn and represent complex functions.